
PLAY
ToolkitToolkitToolkit

PROTECT, LEARN, ENGAGE AND ENJOY

Module 1

Unit 1 - Project overviews and objectives...2

Unit 2 - Digital Competence Framework for Educators (DigCompEdu)......................... 6

Unit 3 - Gamification... 10

Unit 4 - The educational value of using an approach centred on technology............... 13

Unit 5 - Project results.. 15

Module 2

Unit 1 - Unity 3D Platform: uses and potentialities... 16

Unit 2 - Interface... 19

Unit 3 - How to create codes using the C# programming language.............................52

Unit 4 - Input, physics, user interface, scenes and rendering.......................................68

Unit 5 - Practical guide using codes of the PLAY video game......................................79

Module 1

Unit 1 - Project overviews and objectives

Play - protect, learn, engage and enjoy is a project funded by the European Union

under the Erasmus+ program, the EU programme in the fields of Education, Training,

Youth and Sport.The partnership is made of an Italian and a Polish school, a Spanish

Association of European Education and Training and Paidea, an Italian edtech

company. The idea stemmed from the will to make school an environment where

students can freely experiment and build their knowledge using a practical approach

through the support of technology. Things that are taught in school should be directly

linked to the world we live in and should enhance the development of digital skills that

are necessary in a technological and constantly evolving society, following the

directives of the Digcomp.

The PLAY project aims to promote the digital skills of students aged from 11 to 14

years old and to raise awareness of the importance of protecting our planet by directly

engaging them in the development of a video game through the Unity 3D platform and

by making them learn the C# programming language.

One of the Sustainable Development Goals envisaged by the 2030 Agenda highlights

the need to take urgent action to combat climate change and its impact. PLAY uses a

ludic approach to increase students' awareness of the importance of modifying our

lifestyle and to enhance the development of digital competences that represent an

important skill set in the world of work. After specific training, the students developed a

3D video game where it is possible to interact with different environments to

understand the main causes of the waste of resources and pollution as well as to get

to know sustainable alternatives that will contribute to the reduction of our

environmental impact.

1

Unity is a cross-platform game engine primarily used to develop video games and

simulations for PC, consoles, mobile devices and websites. It is possible to

programme in C#, Java, UnityScript or Boo, a language similar to Python. In the

project the selected programming language has been C# as it is very easy to use, so

it's suitable for beginner developers.

They have developed the video game with the supervision of expert programmers and

trainers. More specifically, the activity has foreseen the following phases:

● Training and practice. In the first stage the pupils have been trained on how to

use Unity and on how to programme in C# (together with the teachers); after

being provided with a theoretical background, they have practised how to write

efficient code.

● Development plan. Several brainstorming sessions have been organised,

where students have been able to discuss their ideas and cooperate. After that,

they have had to carry out research on the main causes of climate change and

on greener solutions. This led to the selection of six settings, which represent

the interactive background and levels of the game.

● Production. This is the stage of the actual development of the game.

● Testing and validation. When the output has been completed, the final version

has been tested by the partner schools’ students that have not taken part in the

project.

2

The teachers have actively participated in all the stages of production of this activity,

which enabled them to learn innovative teaching methods and also to develop new

skills.

The main objectives of the project can be summarised as follows:

1. promoting the development of digital and programming skills in young students

that will make them competitive in the labour market;

2. raising awareness, among students and the community in general, of the

causes of global warming and of the importance to fight climate change by

modifying our habits;

3. promoting the development of innovative and digital teaching methods by

providing teachers with the necessary knowledge and competence, in order to

increase the level of motivation of students and their academic performance.

By developing the videogame, the students have had the opportunity to practically

experiment with programming and have acquired digital competences that will be

useful in their future professional life. Computer programming has an integral role in

our world. Learning the fundamentals of programming can give students a competitive

edge in this technology-driven world. Programming skills are also important for

learning to innovate, create eco-friendly solutions for global problems. The students

have at the same time broadened their knowledge on such a crucial topic and have

become responsible individuals that will take on an active role in the fight against

climate change. Becoming aware of such a threat and helping others understand the

consequences of our actions has had an important impact on the participants’ lives,

making them more responsible and conscious about the environment and their role in

society. The activities envisaged were also intended to promote inclusion and

teamwork. Of course some students were more digitally proficient and others were

more interested in the environment and sensitive to this topic. By working together

they had the possibility to learn from each other.

3

In the new learning programmes it is necessary to use suitable methodologies, for

example gamification or game-based learning, to engage students, to stimulate their

creativity, to tailor learning programmes and to make the contents more appealing.

Each one of these aspects represents a key variable that teachers should take into

account to reach pedagogical and learning objectives. This demands that the teachers

possess a significant Teachers Digital Competence: this empowers the teacher for the

use of technology not only as support for their existing practices, but also to use it to

rebuild educational and training settings.

4

Unit 2 - Digital Competence Framework for Educators (DigCompEdu)

The European Framework for the Digital Competence of Educators (DigCompEdu) is a

scientifically sound framework describing what it means for educators to be digitally

competent. It provides a general reference frame to support the development of

educator-specific digital competences in Europe. DigCompEdu is directed towards

educators at all levels of education, from early childhood to higher and adult education,

including general and vocational education and training, special needs education, and

non-formal learning contexts.

Digital competences are necessary in learning and at work and make us active

members of society. In relation to education, as important as understanding the

competences themselves is knowing how to develop them.

What are digital competences?

Digital competence is one of the elements of the eight key competences and refers to

the conscious and critical use of the entire spectrum of digital technologies enabling

the acquisition of information, communication and basic problem solving in all aspects

of life.

What is the DigCompEdu framework?

The frame distinguishes 6 coverage areas:

1. Professional commitment - the use of effective communication technology,

cooperation and communication development.

2. Digital resources - use and use of resources, creation, evaluation and sharing

of resources.

3. Teaching and learning – using different methods and tools in teaching and

learning.

4. Evaluation - control of various methods and tools for consideration and

feedback.

5. Supporting learning – using manufacturing technologies to empower and make

learning environments more accessible, exclusive, inclusive and

learning-focused.

5

6. Supporting the competences of learners - supporting and facilitating the

development of their competences.

The European Teachers' Digital Competence Framework is a standardised framework

that provides a reference and guide for working with teachers' digital competences. It

identifies 6 useful categories of digital learning activities that are broken down into

specific competencies.

The framework aims to show how digital technologies can be used to support

professional development in education and training. The emphasis is not only on

technical skills, but primarily on the context of teaching and learning. The framework

itself aims to "provide a common language and logic as a starting point for developing,

comparing and discussing different instruments for teacher digital competence

development at national, regional or local level".

6

In order to better understand the nature of digital competences, the European

Commission has prepared the European Digital Competence Framework for Citizens

(DigComp), which has been divided into five areas: information and data analysis;

communication and cooperation; digital content creation; security; and problem

solving. In total, they cover 21 competencies.

The continuous development of digital competences concerns both children and

teachers. Everyone, regardless of age, if only acquires the skills of new technologies,

will facilitate their functioning in modern society.

7

It is necessary to train children about their responsibility for implementation and

preparation for life in the modern world, where the main message is that the media

and technologies are developing rapidly. It is also necessary to improve teachers'

training in the field of teaching with the use of modern technology in such a way that

they purposefully support one conducted didactic process, supporting the increase in

the effectiveness of teaching and learning. Recommendations of the European

Parliament and the Council and many legal acts on education evidence for educational

activities focused on the development of scientists studying them for life in modern

society. One of these competences is digital competence.

For additional information please visit the following webpage:

https://joint-research-centre.ec.europa.eu/digcompedu_en

8

https://joint-research-centre.ec.europa.eu/digcompedu_en

Unit 3 - Gamification

There are many definitions of gamification. According to Brian Burke (research vice

president at the technology company Gartner and expert in enterprise architecture)

“Gamification is the use of game mechanics and experienced design to digitally

engage and motivate players to achieve their goals”. Oxford dictionary defines

Gamification as “the application of typical elements of game playing (e.g. point scoring,

competition with others, rules of play) to other areas of activity,[...] to encourage

engagement”. According to Cambridge dictionary, gamification is “the practice of

making activities more like games in order to make them more interesting or

enjoyable”. According to Yu-kai Chou (an Author and International Keynote Speaker on

Gamification and Behavioral Design) there are 8 core drives that make games

engaging for people:

1. Epic meaning & Calling→ You are part of something bigger than yourself.

2. Development & Accomplishment → You are motivated because you feel you

are improving and achieving mastery.

3. Empowerment of creativity and Feedback → Giving people even some

simple elements like LEGO® building blocks to people and letting them free to

find their own way to combine them is a very engaging process. As our students

did when they were asked to create some “puppets” using plastic and paper

waste material (photos).

9

4. Ownership & possession → When you feel you own something, you want to

improve it, you want to protect it and you want to get more.

5. Social Influence & Relatedness → We are influenced by what people around

us do.

6. Scarcity & Impatience → It relates to the fact that sometimes you want

something only because you can’t have it.

7. Unpredictability & Curiosity → If you don’t know what’s going to happen next

you're always thinking about it.

8. Loss & Avoidance → If you do something you want to avoid loss, because

none wants bad things to happen.

In Yu-kai Chou's opinion everything we do is based on one or more of these core drives.

According to other studies games make kids smarter, because video games

fundamentally present a continuous process of learning to users. They are constantly

evolving and moving forward. Games are wired to produce a particular reaction in

people. A game represents a challenge and when you overcome it dopamine is

released in your brain, so we have learning improvement, multitasking increases

connection and a strong dopamin loop in the brain and this produces an intrinsic

reinforcement.

10

Since 2010 Gamification has become a methodology in education all around the world.

Studies show that transforming educational goals through exciting challenges, using

video game models, for example using progress badges or giving the possibility of

seeing performance graphs, satisfies the need of people for competence in a specific

activity and increases the perceived value of the task. Gamification doesn’t mean to

change the lesson into a game but to introduce videogames element into education.

Videogames can stimulate our motivation, interest, creativity, sense of belonging and

happiness in people. All these feelings are resources that we can spend in our daily

activities.

11

So if we introduce videogame rules and schemes in all tasks we have to do in our

everyday life we could complete them with more motivation and satisfaction, having

better results.

12

Unit 4 - The educational value of using an approach centred on technology.

Integration of information technology resources into learning has numerous advantages:

in particular, it provides alternative ways of learning, allows the acquisition of cognitive

skills and knowledge that are important for lifelong learning and above all promotes

motivation. Many of today’s high-demand jobs were created in the last decade,

according to the International Society for Technology in Education (ISTE). As advances

in technology drive globalisation and digital transformation, teachers can help students

acquire the necessary skills to succeed in the careers of the future. The COVID-19

pandemic is quickly demonstrating why online education should be a vital part of

teaching and learning. By integrating technology into existing curricula, as opposed to

using it solely as a crisis-management tool, teachers can create immersive and

engaging learning experiences. The effective use of digital learning tools in classrooms

can increase student engagement, help teachers improve their lesson plans, and

facilitate personalised learning. Technology provides students with easy-to-access

information, accelerated learning, and fun opportunities to practise what they learn. It

enables students to explore new subjects and deepen their understanding of difficult

concepts, particularly in STEM disciplines.

13

The main benefits of using technology in education can be summarised as follows:

● Increased Collaboration and Communication. Educational technology can foster

collaboration. Not only can teachers engage with students during lessons, but

students can also communicate with each other. Through online lessons and

learning games, students get to work together to solve problems. In collaborative

activities, students can share their thoughts and ideas and support each other.

● Personalized Learning Opportunities. Technology allows 24/7 access to

educational resources. It can be used to tailor learning plans for each student.

Teachers can create lessons based on student interests and strengths. An added

benefit is that students can learn at their own pace and review material to get a

better understanding of essential concepts.

● Curiosity Driven by Engaging Content. Through engaging and educational content,

teachers can spark inquisitiveness in pupils and boost their curiosity, which

research says has ties to academic success. Creating engaging content can

involve the use of AR, videos, podcasts and of course games.

The introduction of technological elements and video games in the learning processes in

educational environments is increasingly present in the debates on how to improve the

experience of our young people in a context where the digital is being incorporated into

more domains of our lives. Educators have been using games to teach in this way at

least since 1971, when three student teachers created the classic educational game The

Oregon Trail for use in a U.S. history course. Early arguments for this approach often

centred on the idea that "video games are fun, and as such, provide an intriguing

prospect for coercing some children to learn" (Silvern 10). The fact that games are

effective at motivating players has remained a fundamental rationale for teaching with

content-aligned games. Prensky describes students who came of age in the internet era

as "digital natives" who naturally learn better while using technology (Prensky, "Listen to

the Natives" 9-13). Studies support the idea that 21st-century youth have a strong affinity

for technology, particularly video games and communications networks (Jones et al 6,

Lenhart et al 2-3). Other writers attribute the appeal of games to their engaging mix of

factors including challenge, fantasy and interactivity (Malone 162; Owston 978). Video

14

games can be a very stimulating learning tool for young people in schools. In addition to

addressing certain curricular content, they can support the development of certain skills

necessary to promote good habits. This was the exact objective of the project: finding an

effective way to raise awareness among young students of the urge to preserve our

planet by directly engaging them and making them develop technical and soft skills.

Unit 5 - Project results
Students involved in the project approached programming language by using Scratch

and then Unity to create the videogame. This helped them to enhance their digital

skills; they increased their interest and improved their knowledge in Global Warming,

pollution and eco-sustainability. They were stimulated to find greener and sustainable

solutions to combat global warming and pollution. Creating a video game that included

study topics such as global warming, eco-sustainability and pollution fits into that

strategy known as gamification. This is not only a strategy used in school, but also in

working contexts to stimulate people to find creative solutions to solve problems and to

enhance students’ or workers’ motivation for reaching a specific goal.

During mobilities students improved their knowledge of foreign languages (English),

they knew the habits and culture of another country increasing their mutual

understanding, empathy and the acceptance of diversity. Students and teachers

visited different landscapes, exchanged their knowledge and competence and

improved their ability to work in a team and to cooperate. This project helped students

and teachers to develop a network of relationships with local educational institutions

and with schools of other countries that will last beyond the end of the project.

15

Module 2

Unit 1 - Unity 3D Platform: uses and potentialities

INTRODUCTION.

The advance of technology is amazing. Who could have imagined 100 years ago what

we are capable of doing today with the support of technological tools.

One of these tools is Unity 3D, which gives us the possibility to create real world spaces.

We would like to emphasise that, after reading this toolkit, the end users will be able to

build their own virtual tour of the scenario of their choice, as long as they let their

imagination run wild and thus give their own artistic touch to the desired project.

The project presented in this toolkit was designed for people who do not have any

knowledge in Unity 3D so, if you want to learn it from scratch you are just in the right

place, we will start from the basic configuration of the development environment in Unity

3D, what each button and each application menu is, ensuring prior knowledge of these

utilities, before starting to develop the virtual tour. It will be made clear in the handling of

the dimensions in Unity 3D, because as its own name indicates, it handles the 3

dimensions (x, y, z) and when one does not have practice in the handling of the program

it can be something tedious, because it is a question of habit to learn to be unwrapped

with these dimensions. Having prior knowledge of the tool, we will begin with the creation

of our project and if we are still not clear about some buttons, the doubts will be clarified

as we progress, and as we practise and gain experience in the handling of Unity 3D.

When the creation of the first space or virtual tour is completed, the students will be able

to create their own environment. One cannot imagine how powerful this tool is and how

easy it is to use, let alone how easy it is to create a virtual tour with Unity 3D, so you are

invited to develop this tour step by step so that you can achieve your desired goals.

UNITY 3D.

Unity 3D is a tool to develop mainly video games, few know how to use it and you don't

need to be an expert in programming to be able to use it, because with a few small

16

notions of the required language, you can structure any interactive game. "Unity 3D, a 3D

graphics engine for PC and Mac, is used to develop games, interactive applications,

visualisations and 3D animations. Unity has support for platforms such as PC, Mac,

Nintendo, Wii, Iphone, Android and the web using its "Unity web player" plugin. Unity is

an application created by Unity Technologies which "was founded in 2004 by David

Helgason (CEO), Nicholas Francis (CCO), and Joachim Ante (CTO) in Copenhagen,

Denmark after their first game, GooBall, was unsuccessful. The three recognised the

value of the engine and development tools and set out to create an engine that everyone

could use at an affordable price. Unity Technologies has received funding from the likes

of Sequoia Capital, Capital WestSummit and iGlobe Partners. Unity's success has come

in part due to its focus on the needs of independent developers who can neither create

their own game engine nor the necessary tools or licensing to fully utilise the options that

become available. The company's focus is on "democratising game development", and

making the development of interactive 2D and 3D content as accessible as possible to as

many people around the world as possible". With the rise of the iPhone in 2008, Unity

was one of the first engines to start supporting this platform and today, Unity is being

used by 53.1% of developers according to a survey conducted by Game Developer

mobile and social technology, to create hundreds of games for Android and iOS devices.

Unity has a visual editor to be able to create the games in it, because all the content of

the game is built from this editor and the way the objects behave are programmed using

a script language (JavaScrip); the above gives us to understand that you don't need to be

an expert in languages like C++ to be able to develop a game or an animation with Unity

3D. Unity is structured by managing and creating scenes for the development of the

desired application, a scene can be any part of the game or animation, either a level of

the game or a certain area. You start with a blank space in which you can shape

whatever you want to create using the unity tools. This unity engine also includes a

terrain editor, where you can sculpt the shape of the terrain using the visual tools offered

by unity, you can paint, texture, add grass, place trees or similar, or even import other

materials from other development engines. Unity is accessible to any type of public, as it

is developed in several versions, free and professional, both have great advantages

when developing what is required, however, the most complete version is the

17

professional one, but it should be clarified that this one the free version has a cost that

not everyone can afford and if you are someone who is just getting familiar with the tool,

the free version is more than enough for the time being. Besides Unity 3D, there are

other tools on the market, which may even be more famous, such as UDK, Epic Games

or CryEngine. However, Unity 3D has a great advantage over these and that is that we

are not obliged to develop on Windows operating systems, as Unity 3D also has a

version for Mac operating systems. Unity also provides the facility not only to import

terrains, but also 3D models, textures, sounds, etc. with just a few clicks, which can be

used at any time during development.

18

Unit 2 - Interface
1. FIRST ACCESS

There are two versions of Unity, a free version and a professional version. This manual

will be based on the functionalities accessible to beginners with the free version. The

free version can be found on the Unity website. Once the application is installed, we

can access a demo where we can see the capabilities of Unity and allow new users to

discover the functionalities it offers by studying the creations of its developers.

2. USER INTERFACE

In this part of the manual we will look at what the Unity user interface is made up of.

There are mainly 5 areas of the Unity interface, listed in the image below:

19

● Hierarchy view. Where they will have all the objects in the current scene.

● Scene View This is the area where we visually construct each scene. The

easiest way to use the scene view would be to drag objects from the object

management view to the scene view which will place the object in the scene;

you can then position, scale and rotate it without leaving the scene view. The

scene view is also the place where you edit terrains (sculpting them, painting

textures and placing elements), place lights and cameras and other objects.

● Inspector View. This view has several functions depending on what the user

selects, whether they want the characteristics of an object or terrain

configuration. If you select “camera” then it will show the properties where you

can customise features such as rotation, position or scale.

● Project view or object management. This is the library for our project, similar to

a library of tools and/or objects. You can import 3D objects from different

applications into the library, you can import textures and create other objects

that you can store for use in your project. A normal project will contain several

scenes and a large amount of assets, so it is necessary to structure the library

in different folders that will make the assets organised and easier to use.

● Search view. It is used to locate objects that we need to use in the realisation of

the project.

3. APPLICATIONS MENU

20

The Unity options menu at the top left of the screen is shown below. Throughout the

manual, the utilities of each of the sections of this menu will be shown.

3.1 CONTROL BUTTONS

Below the display options you will see a row with 4 buttons that you can use Q, W, E,

R to toggle between each of the controls, which are detailed below:

- Hand Tool (Q): This control allows us to move around in the scene view.
o ALT will allow us to rotate.

o CTRL will allow us to zoom in and out

o SHIFT increases the speed of movement while using the tool.

- Translate Tool (W): Allows us to move any selected object in the scene in the X, Y

and Z axes.

- Rotate Tool (E): Allows us to rotate any selected object in the scene.

- Scale Tool (R): Allows us to scale any selected object in the scene.

When using the translation, rotation or scaling tools we will see a gizmo around the

selected object with lines for each of the axes. We can use this gizmo to perform

translation, rotation and scaling operations.

3.2 PLAYBACK BUTTONS

In Unity you can run your game without leaving the editor, which is a boon for

designers who are building levels and developers who are adding new game

mechanics

21

The image shows the playback controls, which are located at the top of the editor. You

can enter a game view at any time by pressing the play button to see the status of the

project (first from the left), pause using the pause button (centre) or skip forward using

the right button. You can play from the game view or extend it to full.

3.3 SCRIPTS

Scripts allow the definition of the game logic. Throughout the tutorial you will see

several simple scripts such as defining a movement, turning lights on or off. The

operation is very simple, first you define the desired behaviour in a script and this is

added as a component to the object for which you want to assign that behaviour, you

can even add a script to an empty object. There are 3 basic functions for scripts:

- Update() function: function that defines the main loop of the game so it is

executed once for each frame that is rendered.

- Awake() function: The variables defined within this function shall be initialised

just before the game starts. This function shall be executed only once for the

duration of the script instance.

- Start() function: This function is very similar to "Awake()" but has a vital

difference; it will only be executed if the script instance is enabled. This will

allow us to delay the initialisation of some game state variables. We must also

keep in mind that the "Start()" function will always be executed after the

"Awake()" function has finished.

Unity 3D also has a default script editor called uniscite.

22

4. STARTING UNITY 3D

The first thing to do is to start Unity 3D. When you do this a blank project will load. If

you want another scene then we look in the menu: "File -> Open Scene" and look in

the project directory ("Assets/scenes"). Display modes by default the scene view has a

3D perspective of the scene.

Perspective

You can change the scene view to a number of views: top down, side and front. On the

right side of the scene view you will see a "Gizmo" which looks like a box with cones

coming out of it.

● With this Gizmo we can change the perspective of the view.

● Clicking on the box will take you to perspective mode.

● Clicking on the green cone (y) will take you to Top-Down mode.

● Clicking on the red cone (x) will take you to Side mode (right).

● Clicking on the blue icon (z) will take you to Front mode.

● We also have 3 grey cones that will take us to the following modes:

● "Back, Left and Bottom".

4.1 HIERARCHY VIEW

23

The hierarchy view contains all the elements that make up the game scene. You can

manipulate all the objects in the scene from this view, every time you enter an element

in the scene, an entry for this element is added in this view. Selecting an object in this

view also selects it in the scene and in the inspector. This allows and facilitates

moving, scaling, rotating and deleting the object or editing its parameters. All this

without touching a single line of code.

To insert a new object to the scene you can click on "CREATE" and all the objects you

want to add will be displayed.

4.2 SCENE VIEW

The scene view is the part of the 3D graphical environment for creating each scene. To

work in the scene view the easiest way is to drag an object from the project view to the

scene view, which would place the object in the scene, and thus place it where you

want it to be.

The scene view is also the place where you edit terrains (sculpting them, painting

textures and placing elements), place lights and cameras and other objects. The

following will explain the scene view options:

24

On the left side of the scene view you will find a set of buttons to change the general

display settings. Let's look at each of them, from left to right:

Render mode

The default will be "Textured". If clicked, a drop-down list will appear with a number of

different rendering options:

● Textured: Textures are rendered in the view.

● Wireframe: Surfaces are not rendered, we only see the mesh.

● Textured Wire: Textures are rendered, but we also see the mesh.

● Render Paths: change the representations and characteristics of objects

according to the projects being created.

● lightmap Resolution: to give a more optimal resolution to the objects that make

up the scene.

Colour mode, displayed as "RGB".

If you click on this button, a drop-down list will appear showing the available colour

modes and you will be able to see the different ways of displaying the scene:

● RGB: All colours are rendered.

● Alpha: The mode is changed to "Alpha".

● Overdraw: The mode is changed to "Overdraw".

● Mipmaps: The mode is changed to "Mipmaps".

3D-2D option

25

Where we change the scene display from an X, Y, Z plane to an X, Y viewing plane.

Light switch

The next button turns the stage lighting on or off.

Audio

The next button turns the scene audio on or off.

Effects

26

The effects button is used to disable video effects to improve performance while

designing the project.

Gizmos

They help to refine the graphics of the scene even when using programming

languages.

4.3 GAME VIEW

The game view allows you to preview the game in the as-is view or by maximising it to

full screen. In this view you can see the game in motion to check that the game is

working properly.

The Game view is very useful but it has a drawback, when testing the project on the

computer, it moves with the keys or the mouse which does not help much if the project

is being developed for another platform, for example a mobile device. In this case the

tests have to be done using an emulator or compiling a mobile version.

27

● The "Maximize on Play" button: allows you to maximize the full screen view of

the game.

● The "Stats" button:

● The "Gizmos" button:

● Free Aspect" drop-down:

4.4 INSPECTOR'S VIEW

In the inspector view, the parameters of the objects selected in the scene view or in

the hierarchy view are displayed. This way when you select an object in the scene,

you can modify its parameters in the inspector (position, rotation, translation, etc). The

inspector also serves as a tool panel for some elements such as terrains allowing you

to sculpt them, add textures and more.

In the inspector view you can see the elements that define the behaviour of the

objects, these elements are called components. In addition, objects and their

associated components can be activated or deactivated here. The components can be

scripts, animations, colliders...etc.

Finally, the inspector changes depending on the selected element.

28

4.5 PROJECT VIEW

The project view is a library of assets for the creation of the game. In this view are

stored all the elements that are created and imported to be used in the game. These

elements can be 3D objects, textures, sounds or scripts.

In this window it is possible to have a multitude of resources but this does not imply

the use of all these resources for the creation of the video game.

29

Since this view contains both the elements used in the scene and the elements not

used in the scene, it may contain a large amount of data. This implies that a good

structure has to be maintained to facilitate the user's work. The organisation of this

view can be done by creating a hierarchy of folders. The "create" dropdown contains

the options that allow a good organisation of the view.

5. CREATE A NEW PROJECT

Creating a new project involves going to the top bar of Unity and clicking on File ->

New Project to open the "Create new Project" dialogue window.

First select the folder in which you want to save the project by clicking on "Browse...".

In order to create a new project, you have to import the necessary packages for the

project.

Packages are sets of assets and can be imported when creating the project or at any

time afterwards.

The imported packages can be the ones predefined in Unity, others created by the

user or obtained from the Web, some of them are free to download and others are

paid.

From the list that appears on the website, select the assets and click on "download".

For the assets found in the programme, we select the ones we want and click on

"Create". The basic package to import is the standard set of assets.

30

When the new project is created, Unity 3D is restarted by creating the project structure

in the specified folder. The Unity 3D start screen opens, showing the imported assets

in the project view and a camera in the scene and hierarchy view.

Some of the most important packages are:

● Character Controller: Allows you to create scripts to move the character.

● Particles: Allows the creation of particles such as fire, smoke, waterfalls and

explosions.

● Skyboxes: Enables the creation of skies.

● Terrain: Allows terrain to be created and sculpted.

● Water: Create water (sea, rivers, etc).

● Tree: Creator to create trees.

5.1 CREATE A NEW SCENE

Unity 3D works by scenes and when we create a new project it automatically creates a

new scene, if we want to create another scene, go to File _ New Scene and we save it

automatically in File _ Save Scene. The scene is saved in the asset folder of the

project and will appear in the project view (folders can be found in Documents/New

Unity Project or whatever name we call the scene).

Once the scene is saved we can create all the elements that will compose the scene,

and we have different ways to manipulate the scene.

Some tricks for scene manipulation:

● If we want to see the scene from different angles we can rotate around using

ALT and moving the mouse.

● If you want to zoom in or out you can use the mouse wheel.

● The arrows on the keyboard allow you to move the scene left, right, up and

down. The same can be done by holding down the mouse and moving it in one

direction or the other.

● To increase the speed of movement of the scene hold SHIFT.

31

When creating a scene, a camera appears by default in our world. If we click on "Main

Camera", the characteristics of the camera can be displayed in the inspector and can

be modified (positions, rotation, scale).

The camera defines the player's point of view and several cameras can be combined

in the same scene.

5.2 CREATING THE GROUND

Unity 3D has a tool with which you can define any terrain, it normally handles terrains

as a flat mesh, but you can texture and sculpt without leaving the editor. From the

menu you can create a terrain by clicking on:

● “Terrain -> Create Terrain”.

You get a flat terrain, if the terrain is not visible you have to deactivate the lights in the

scene view.

32

Once the terrain has been created, the following result is obtained:

If we want to customise the terrain and make it more realistic we have to make use of

the terrain tool. The terrain is selected in the scene view or in the hierarchy view so

that the terrain editing tool appears in the inspector view.

This tool is divided into 3 parts:

● Transform: Allows to move, rotate and scale the terrain on the x,y,z axes.

● Terrain Script: Contains several tools and properties for terrain that will be

explained later.

● Terrain Collider: Contains the collision properties for the terrain.

● We are going to proceed to detail the "Terrain Script" panel and we will see a

row of buttons. These terrain editor buttons allow you to perform different tasks.

The description of what the buttons allow you to do from left to right:

● Raise / Lower: allows you to raise and lower the terrain geometry using a brush.

● Set Height: we paint the terrain with a height limit.

33

● Smooth: allows you to smooth a terrain to eliminate corners.

● Paint Texture: allows you to paint textures on the terrain surface.

● Place Trees: allows you to place trees.

● Paint Detail: allows you to draw terrain details such as grass.

● Terrain Settings: Access to the terrain properties where we can change several

properties.

First you define the heights of the terrain by clicking on the places where you want to

place a mountain, the longer you hold down the mouse the bigger the mountain will

become. The terrain can be transformed into the following image:

The second option "Set Height" allows you to set a maximum height in the "Height"

field.

34

By setting a maximum height, the terrain can be further shaped to give it the right

geometry. Once the maximum height is reached, the terrain is flattened. The third

option "Smooth" allows you to smooth the peaks of the terrain. It is advisable to sculpt

in steps, first the large parts and then refine the smaller details. At the end you get a

terrain as shown in the picture:

Once a terrain with the desired appearance is obtained, several textures can be

applied. The first texture is considered the base texture and is applied to the entire

terrain. The other textures will be applied in higher layers.

The fourth option "Paint the terrain texture" allows you to add texture to the terrain.

First choose the type of brush you want to use in "Brushes", then add the chosen

texture in "Textures" by clicking on "Edit texture> Add Texture".

35

An "Add Terrain Texture" window appears, click on the red highlighted circle to get the

"Select Texture 2D" window, you can choose a texture and it will appear in the "Splat"

field and in the "Texture" field in the inspector. You can also choose the width and

length of the texture.

Once the textures have been applied, they will appear on the terrain, which will look as

shown in the following image:

Unity 3D offers special support for introducing trees. You can add as many trees as

you want using the fifth option "Places tree". First you use the "Edit Trees" option to

36

choose the tree you want to add to your world, then you customise the tree by defining

several parameters, the size of the brush with which the tree is to be placed, the

density of the trees (determines the number of trees to be placed), the colour variation

(colour difference between one tree and another), the height and width of the tree.

Finally, click anywhere on the terrain to add the tree at the chosen location. To delete

the trees, hold down the Shift key and click on the terrain.

You can also add several trees to your world in bulk to create a forest in one go. Click

on "Terrain->MassPlace Trees" and a dialogue box will appear in which you can

determine the number of trees you want to introduce into the game.

A tree can be selected by going to the folder "Standard assets > Tree Creator >

Textures", click and drag it to the terrain.

5.3 LIGHTING

If you want to illuminate the stage with the same intensity just add point light and put

the desired lights on the stage: créate>point light

37

If high quality lighting is desired, Unity integrates the Beast technology, which is an

Autodesk software that generates high quality lighting mappings.

"Create Lightmap" is used for different light creations that allow varied lighting for

different terrain textures.

Access Windows>Lightmapping and see the following:

To control the resolution of the lightmaps, the resolution value is set in the Bake panel

and applied automatically.

38

Lightmapping improves the definition on the ground as an area of trees and their

shadows.

5.4 LAND ENVIRONMENT

The terrain environment will help the user to customise the environment in which the

scene he is building is located, for example by adding a sky or water.

5.4.1. ADDING WATER TO THE SCENE

Unity includes several ways to add water to the scene, one of which is that the user

can use directly. Two of these directly are the "Bake de lightmapping" and the

"Nighttime Simple Water".

As an example we will add "Daylight Simple Water" inside the terrain. Go to "Standard

asset > Water", select the "Daylight Simple Water" and drag it into the scene.

39

The characteristics of the water can be seen in the inspector:

5.4.2 ADD SKY

You can add the sky in two ways, by attaching a skybox to the camera or directly to

the scene. Go to "Edit > Render Settings" to activate the fields in the inspector as

follows:

40

This menu allows you to configure the scene's sky, fog effects and some global lighting

effects. You can import your own textures or use the default ones from unity assets.

There are 2 options for applying the sky to the scene:

Option 1: go to the Render Settings menu, click on the small disc icon to the right of

the Skybox Material field, a new window will open with all the material resources

loaded in the project.

Option 2: in the project view under "Standard Asset > Skyboxes", select the

appropriate sky for your scene and drag it to the "Sybox Material". For this result the

sky "Sunny 1 Skybox" has been chosen.

Unity 3D offers several options to customise the environment of the scene, these are

some of them:

● Fog: allows you to add fog to the scene, the scene becomes misty.

● Fog Color: the colour of the fog, default colour is grey.

41

● Fog Mode: linear, exponential or exponential squared. This controls how the fog

fades.

● Fog Density: density of the fog, only used for exponential and exponential

squared. a. A higher density will decrease visibility and a lower density will

increase visibility.

● Linear Fog Start/End: start and end of fog distances, only used if the linear fog

option is activated.

● Ambient Light: default is a grey. If we want to give the scene a different lighting

scheme, changing the Ambient Light is a good start.

● Skybox Material: the sky texture of the scene.

● Halo Strength: Size of all light halos relative to their range.

● Flare Strength: Intensity of all flares in the scene.

● Halo Texture: reference to a texture that will appear as the glow of all halos in

the lights.

● Spot Cookie: The reference to a Texture2D that will appear as the cookie mask

for all spotlights.

5.4.3 MOVEMENT

Unity includes a first person controller that makes it easy to create games with a first

person view. By accessing the "Standard Assets > Character Controllers", select the

"First Person Controller" and drag it to the position where you want to place it in the

scene.

42

In previous versions of Unity you could only program the movement with a small script

shown below:

You can see the camera that has been added to your scene, from the four camera

points you can increase or decrease the focus that the camera will have.

Once we have our camera ready, the movement can be done through several options:

Movement: with arrows or keys (W: forward, A: left, D: right and S: back). The camera

is controlled with the mouse.

43

The jump with the space key.

The "First Person Controller" can be customised in the same way as the other

elements in the inspector. To do this, it is selected in the hierarchy view and its

characteristics appear in the inspector.

Explanation of controllers:

● Height: height of the controller

● Radius: controller radio

● Slope limit: maximum value of the slope that the controller can climb.

● Step offset: this value is between 0.1 and 0.4 for a human being of 2 metres in

size.

● Skin width: allows you to control the character's colliders so that the character is

not blocked.

● Min move distance: If the character tries to move below the indicated value, it

does not move at all. This can be used to reduce vibrations. In most situations

this value should be left at 0.

● Center: the position of the controller, its x, y, z coordinates.

5.4.4 AUDIO ON THE SCENE

In we can insert sound into the game. There are two different types of audio, 3D audio

or 2D audio.

44

3D audio is heard at one position and attenuates as you move away from that position.

2D audio is heard evenly throughout the scene.

First you create a folder named "sound" in which you save an imported sound, for

example one that represents the environmental sounds of a jungle or forest.

Select the "Main Camera" and go to Component> Audio> Audio Source.

The imported sound is then dragged into the "Audio Clip" box in the inspector view and

the audio is configured:

45

The "Play On Awake" checkbox is activated so that the sound starts at the beginning

of the project.

The "Loop" checkbox is activated so that the music is looped and repeated as many

times as necessary.

On the "Listner" graph in the component, select the green point at the highest point

and drag it to the centre of coordinates (0,0).

A minimum distance of 0.1 is defined in "Min Distance".

5.4.5 TURN STAGE LIGHT ON AND OFF

In this version of Unity turning the stage light on and off works by clicking the light

button found in the stage view options, but if you want to turn the light off in the stage

you create at some point, you can write a simple script as shown below:

46

Explanation of the script:

● myLight = Light.FindObjectOfType(typeof(Light)); _ searches the scene for the

object of type "light" (the light in the scene).

● if(Input.GetButtonDown("Fire1")) when the left mouse button is pressed.

● myLight.enabled = !myLight.enabled; _ changes the state of the light, if it is on,

it is turned off and vice versa.

● myLight1.enabled = !myLight.enabled _ this line is duplicated because there are

2 lights in our scene.

Once the script is created, it is added to the object and in the parameters that appear

in the inspector view, drag each of the 2 lights so that it looks like this:

5.4.6. CREATION OF AN OBJECT

We will explain how to create an element, in this case a cube.

47

To create the predefined objects in Unity 3D, go to GameObjet > Create Other and a

list of items is displayed.

Some important components of GameObject are:

● Camera: allows you to insert a camera into the scene, although when creating a

project Unity places a camera by default.

● Directional light: introduces a uniform directional light that allows you to see the

scene.

● Cube: put a cube in the scene.

● Sphere: put a sphere in

● Capsule: insert a capsule

● Cylinder: to put a cylinder

● Plane: introduces a plane into the scene. When one of the "GameObjects" is

selected, it appears in the scene view, game view and hierarchy view. In

addition, in the inspector view you can see the attributes of the object for the

parameterisation of the object.

48

5.4.7 MANIPULATION OF THE OBJECT

Once we create the object, in this case a cube, we can modify it to have the necessary

dimensions, position and shape to achieve the desired characteristics.

The position of the cube can be changed using the second control button:

As we can see in the following image, we can move the cube on the X (red), Y (green)

and Z (blue) axes. To move the cube just click on the axis where you want to move it

and drag it to the new position.

The third control button allows you to rotate the cube.

Comparing the previous image, in this one we see how the cube rotates.

The different circles that appear around the cube when the rotation option is selected

allow the user to choose the axis on which he/she wants to perform this operation. To

49

rotate an element, click on the one identified by coloured circles and move the mouse

in the selected direction.

5.4.7 CREATION OF A WORM

As we already know how to create an object, we are going to create a simple

character, a worm based on spheres. The first sphere is created in "GameObject >

Create Other > Sphere":

Place the sphere on the terrain in the position you want. To create other identical

spheres, press "CTRL + D", this new sphere appears on top of the old one and can be

moved. Repeat the same action until you have 4 spheres. You can see that the

spheres appear in the hierarchy view where you can rename the first sphere to "head"

and the others to "body". To rename a Game Object, select it in the hierarchy view,

right click and "Rename". Modify the spheres representing the body by making them

smaller using the inspector for more precision.

50

In addition, to optimise the organisation of our project, an empty object is created in

"GameObject > Create Empty", renamed as a worm and the head and body are

dragged onto the worm.

Then a texture is imported, applied to the character and the following result is

obtained:

Finally, to make all the elements that make up the body of the worm follow the head,

the "Smooth follow" component will be used, which will be explained in the next

section.

5.4.8 MOBILITY OF THE OBJECT

Select the head in the hierarchy view, go to Component> Scripts> Third Person

Controller. In this way you can give mobility to the head and control it in third person. If

you want to move the whole snake, you would have to apply the "Third Person

Controller" to the whole worm.

51

And we can see in the inspector view how the new component appears with all the

parameters that can be configured.

To finalise the project we can export run the project:

You select the platform and architecture on which you want to export the project, you

can export on platforms WINDOWS, MAC, LINUX, ANDROID, IOS can with free

52

licensing if you want to export to game consoles such as XBOX, WII and PLAY

STATION would have to pay for licence.

Finally, click on Build and Run and the project starts to export, give it a name and store

it in the folder of your choice, ending with an executable of the platform you have

chosen, taking into account the architecture of the computer on which the project is

being carried out.

At the end of the project, it can be concluded that video game engines are very useful

tools that facilitate the work of creators by allowing them to focus on the creative

aspects and not so much on the structural aspects, in order to satisfy the demands of

consumers rather than to adapt to demanding consumers.

Unity 3D is one of the most current engines for the design of video games, it is very

complete and a very powerful engine. In addition, each version has been adapted to

new trends such as multi platform design. This characteristic gives Unity3D an

advantage over some video game engines.

To carry out this project we have used the free version of Unity 3D, but because it is

free it is no less powerful. Unity offers users a simple environment that allows the

creation of a project very quickly and since it is not necessary to have deep knowledge

of programming anyone can use it with a few basic notions.

53

We must bear in mind that Unity not only allows the creation of video games or virtual

tours, but it is also a very popular tool for architects and designers, since it allows the

creation of 3D environments in a simple and fast way.

54

Unit 3 - How to create codes using the C# programming language

INTRODUCTION.

In 2002, Microsoft announced the release of the C# language, similar to C++ and

Java, but improved (in music the symbol # stands for "one semitone higher"). This

development was an important part of Microsoft's "dot net" initiative, which we will

describe below. Because of the similarity between C# and its predecessors, learning it

will make the C, C++ and Java languages more understandable if you ever need to

use them.

• C# is an object-oriented language, derived from C++ and Java.

• Microsoft's .NET framework is an important product, which includes the

languages C#, C++ and Visual Basic.

• Programs are lists of instructions that computers obey automatically.

• Nowadays, the main trend in programming practice is the Object Oriented

Methodology (OOP), and C# fully supports it.

1. CREATING A PROJECT WITH C#

In this manual we will use the acronym "IDE" (Integrated Development Environment)

to refer to the C# integrated development environment. Like word processors,

programs that facilitate the creation of documents, the IDE has tools for creating

(developing) programs. All the tools we need for that purpose are integrated, so we

can do all our work within the IDE instead of having to use other programs. In other

words, the IDE provides us with a complete programming environment.

1.2INSTALLATION AND CONFIGURATION

To follow the exercises you need to download Microsoft Visual C# 2008 Express

Edition. Follow the installation instructions and register the product if you are prompted

to do so.

55

We will now explain how to group the programs you create with C# in a specific folder.

When you create a program, C# generates several files and places them in a new

folder. The resulting set of files is called a "project". It is a good idea to create a

top-level folder to store all your projects. The default folder that C# uses is called

Projects and is located inside the My Documents folder in Visual Studio 2008 on the C

drive. Almost all users find this to be appropriate, but if for some reason you need to

change that default location, follow these steps:

1. Click on the Tools menu at the top of the screen. Select Options... Make sure

that Show all settings is selected.

2. Click on the Projects and Solutions option and then on the ... button to the right

of the Project Location section.

3. The Project Location window will then open, where you can choose an existing

folder or create a new one. Click the OK button when you are finished.

From now on C# will save all the work you do in the default project folder or in the one

you have specifically selected. In any case, the first time you save a project, a dialog

box with a Browse button will appear, in case you need to use a different folder than

the one you have selected.

1.3CREATING THE FIRST PROGRAMME

The program we will create next will display the Hello World message on your

computer screen. Regardless of the above, you will need to follow these general steps

to create any programme.

Figure 2.1 The home page

56

Figure 2.2 The New Project window

• Open the IDE. The Home Page will appear, as shown in Figure 2.1.

• Click on the Create: Project link... Figure 2.2 shows the New Project window

that will appear in response.

• Make sure that the Windows Forms Application template is selected. Choose a

name for your project, which will also become a folder ID. We recommend that you

use only letters, digits and spaces. In our case we used the name First Hello.
Click OK. A layout area similar (but not necessarily identical) to the one shown in

Figure 2.4 will appear.

• To facilitate your foray into the C# language, the toolbox should always be visible.

Click on the View menu and select Toolbox. Now click on the "pushpin" symbol in

the toolbox, as shown in Figure 2.3; the toolbox will be permanently fixed and

open. Click on All Windows Forms to see the list of available tools. Your screen

will now look almost identical to the one in Figure 2.4.

As previously mentioned, the above steps are common in the realisation of any

project. Let us now perform a specific task for this particular project.

Note the form and toolbox illustrated in Figure 2.4. We will now select a control from

the toolbox, and place it on the form. Here are the steps to follow:

• Locate the toolbox and click on the Label control.

• Move the mouse pointer to the form. Click and, without releasing the button, drag

to create a label as in Figure 2.5.

57

• Now we will set some properties of the label: right-click on the label and select

Properties. Move the mouse to the Properties list at the bottom right of the screen,

as shown in Figure 2.6.

Figure 2.3 The toolbox is fixed and open.

Figure 2.4 The IDE at design time.

Figure 2.5 A label was added to the form.

58

Figure 2.6 Label properties.

Figure 2.7 Click on the arrow to run the programme.

• Scroll down to the Text property and replace the text label1 with Hello World.

• Now let's run the program by clicking on the arrow at the top of the IDE (Figure

2.7); this is the Start Debugging button.

A new window will appear, as shown in Figure 2.8. This is the programme you have

created. It only shows some text, but it is a real window in that you can move it, resize

it and close it by clicking the X icon in the top right corner. Experiment with this

window, and then close it.

To save your programme for later use:

• Go to the File menu and select the option Save All (hereafter, to indicate this type

of actions we will use a short form like this: File | Save All).

• The Save Project window will then appear, as shown in Figure 2.9. Make sure that

the option Create directory for solution is unchecked. Leave the other options as

they are and click Save. When you save the project again, the same options will

automatically be used and the Save Project window will no longer appear.

You can now use the File | Exit command to close the IDE.

59

The next time you use C#, the name of your project will appear on the Start Page, so

you can open it with a single click, without having to repeat the work we did to set up

the project.

Figure 2.8 The First Hello program running.

Figure 2.9 The Save project window, with the Create directory option deactivated.

1.4DESIGN-TIME CONTROLS
In our First Hello programme we placed a label on a form and modified the text to be

displayed. The main purpose of the exercise was to review the steps involved in

creating a project. Next, we will learn some of the basics of controls and properties.

What is a control? It is a "device" that appears on the screen, either to display

information, to allow the user to interact with the application, or both. The C# IDE itself

uses many controls. For example, in the previous exercise you used the drop-down

menus to save projects, and the OK button to confirm actions. For Windows

applications, the toolbox contains about 70 controls; part of the programming task

involves selecting the appropriate controls, placing them on a form, and setting their

properties. In contrast to "run-time", this phase is related to the use of the controls and

is called "design time". When the program runs, the user interacts with the controls.

60

The programmer's job is to create a graphical user interface (GUI) to facilitate this

interaction. Let us now look at how the controls can be manipulated at design time.

● It is possible to select a control from the toolbox and place it on a form. The

initial position assigned to it is not important, as we can easily change it.

● It is also possible to move the control. If you place the mouse pointer over a

control, a four-headed arrow will appear next to it, as shown in Figure 2.10. You

can then drag the control with the mouse.

● You can change the size of the control. When you click on a control, several

small boxes (size handles) appear at its edges. Place the mouse over one of

these small boxes and a double-headed arrow will appear, as shown in Figure

2.11. Drag the edge or corner to resize the rectangle.

In fact, the method of resizing depends on the control itself. For example, the label

control has a property called AutoSize (automatic sizing, according to the dimensions

of the text entered) which we set to

Figure 2.10 Controls can be moved ... Figure 2.11 ... and resized as appropriate.

If we leave the AutoSize property set to True, the width of the label will be determined

based on the width of the text to be displayed, and the height will be determined based

on the font size of the text. Other controls allow the width to be varied by dragging the

handles with the mouse, but not the height (which is set according to the fonts). Some

controls - such as buttons - allow their size to be changed in any direction. In general,

the size of controls depends on their intended use, so we recommend experimenting

with them. However, since labels are so common, we should not forget their AutoSize

property.

Next, we will look at properties. Here is an analogy: televisions have properties such

as the colour of the casing, the size of the screen, the channel it is showing at any

given time, its price and its brand.

61

Similarly, each control has a set of properties that can be adjusted at design time to

suit our requirements. We will see later how to change a property at runtime.

After placing a control on the form, to view its properties, right-click on it and select

Properties; this will display the properties window of the chosen control. The left

column contains the names of the properties, and the right column contains their

current value. To change a property we must modify the value in the right column. For

some properties it may be necessary to select several additional options, such as

when changing colour settings and text fonts. Sometimes, when the range of values to

choose from is very wide, it is necessary to open an additional window.

Another vital aspect of a control is its name. This is not itself a property, but for

convenience it is shown in the list of properties as (Name). The brackets indicate that it

is not actually a property.

When we place multiple labels on a form, the IDE selects their names as follows:

label1label2label3 ...

These names are acceptable for now, but in the following chapters we will see that it is

better to change the default names of some controls to more representative names. To

change the name of a control you need to modify the text to the right of (Name) in the

list of properties.

1.5EVENTS AND BUTTON CONTROL
The program we created in the previous exercise is not very representative, since it

always shows the same words and the user cannot interact with it. Next we will enrich

this program so that a text message appears when the user clicks on a button. This is

an example of how to use an event.

Almost all events are triggered by the user, and are generated when the user

manipulates a control in some way at runtime. Each control has several events to

which it can respond, such as the click of a mouse button, a double-click, or the

placement of the mouse pointer over the control. Other types of events do not

62

originate from the user; for example, notification that a Web page has finished

downloading.

In the programme we will create next, we will detect an event (the click of a button);

then we will make a text message be displayed on a label. Here is how we will create

the user interface:

● Create a new project called Hello button.

● Place a label and a button on the form. The position in which you do this is not

important.

● Type Click here in the Text property of the button.

● Modify the Text property of the label, so that it appears without content.

Run the program, although it is not yet complete. Note that you can click on the button,

and that it changes its appearance slightly to confirm that it is being pressed; nothing

else happens. Close the form.

Now let's see how to detect the click event. Double-click on the button inside the

layout form. This will open a new information panel, as shown in Figure 2.12. Note the

tabs at the top:

Form1. csHome page Form1.cs [Design] [Design

You can click on these tabs to switch panels. The Form1.cs pane displays a C#

program. This is known as "program text", or C# "code". Let's modify this code using

the IDE editor.

Figure 2.12 C# code in the editing pane.

63

Scroll through the code until you find the next section:

private void button1_Click(object sender, EventArgs e)

{

}

This section of code is known as a method. The name of the method is

button1_Click. When the user clicks on the button1 button at runtime, it will carry

out, or "execute", whatever instruction we place between the two lines above.

In this specific program we will use an instruction to place the message Hello World in

the text of the label1 label. The instruction to perform this action is:

label1.Text = "Hello world";

Write the instruction exactly as shown here, between the lines { and }. In the following
chapters we will explain the exact meaning of lines like the one above (which imply an

"assignment instruction").

The next step is to run the programme. There are two possibilities for this:

• If the programme runs correctly, when you click on the button you will see the

message Hello World appear on the label.

Figure 2.13Wrong action. Tick the check box and click No.

• The other possibility is that the program will not run due to an error. In this case C#

will display a message like the one in Figure 2.13. Check the checkbox for the

option Do not show this dialog box again, and click No to continue. The

message will not appear again; henceforth the only evidence of the error will be an

underline in the text of the code.

64

In any case, the error must be corrected: review the code, correct any typos, and run

the program again. We will discuss errors in more detail later.

Here are the new features of this programme:

• It can respond to the click of a button. The process of placing code so that the

corresponding action is performed when an event occurs is known as "handling"

the event.

• Modify the value of a control's property at runtime. Previously we only did this at

design time. This is a very important part of programming, as we often have to

show results by placing them on a certain property of a control.

1.6OPENING OF AN EXISTING PROJECT
To reopen a previously created project, save and close the project in progress and go

to the Start Page. This shows the projects you have worked on most recently; to open

a project, simply click on its name. If the project you are looking for is not in the list,

click on the Open: Project... link and navigate to the appropriate folder. Inside the

folder is a file of type . sln (solution). Select this file and open the project. To view the

form go to the Solution Explorer, located at the top right of the window, and

double-click on the form name.

1.7DOCUMENTATION OF PROPERTY VALUES
In this book we need to provide you with the values of the properties that we will use in

the controls. When the number of properties is small we can explain them in a few

statements, but if the number is larger we will use a table. In general we have several

controls; each control has several properties and each property has a value. Note that

there are a large number of properties for each control, but we will only list those that

you have to modify. The others will keep their default value. Here is an example:

Control Property Value

label1 Text Hello world

label1 BackColor Web

65

button1 Text Click here

The values listed correspond to the following controls:

-label1 whose text is Hello world, and whose background colour is red;

-button1 whose text is Click here.

Be careful when writing property names. We will discuss this in more detail in later

chapters; for now, suffice it to say that you should do so with an initial capital letter,

and no spaces.

1.8ERRORS IN THE PROGRAMMES
It is common for bugs to occur in programs; fortunately, the IDE can detect some of

them for us. Here is an example of an error:

label1.Tixt = "Hello world".

If you type this line and run the program, the IDE will underline it. Placing the mouse

pointer over the underlined part will bring up an explanation of the error. Note that the

explanation may be difficult to understand (even for an expert), or that the error may lie

elsewhere in the program. However, the first step should always be to inspect the

underlined area for typing errors. As you learn more about the C# language, your

ability to detect errors will improve.

Once the highlighted errors have been corrected, the program has to be executed. In

fact, before this happens, another program called a compiler is activated, which

checks the code for perhaps more errors. Only until all compilation errors have been

corrected can your program be executed.

Compilation errors are displayed in the Error List window, which opens below the

code. By double-clicking on the error in the results window, the IDE will take you to the

point in the code where the error needs to be corrected.

66

Anyone starting to write programs will face many compilation errors. Don't be

discouraged; this is part of the learning process.

After correcting the compilation errors, the program will be able to run. At this point we

may notice that it does so incorrectly, which would mean that there is a "run-time

error", or bug. Such errors are more difficult to correct, and debugging is therefore

necessary.

1.9FUNCTIONS OF THE EDITOR
The editor is not limited to displaying what the programmer writes; the following are

some of its additional virtues:

● It offers standard cut, copy and paste operations to the clipboard, allowing you

to copy code from other Windows programs.

● To write larger programs, additional controls and events are required. The

drop-down lists at the top of the editor allow you to select controls, plus a

specific event for that control. The editor is automatically placed in the

appropriate method.

● The editor will display the C# code as it is typed according to certain rules. For

example, spaces will automatically be inserted around the = symbol.

● Some lines will need indenting - shifting the text to the right - for which

additional white space must be inserted. This is usually done in four-space

intervals. As we will see in later chapters, C# code consists of sections within

sections, and indentations help indicate where each section begins and ends.

The process of indenting a program is also known as formatting. The IDE can do this

automatically via the menu:

Editing | Advanced | Formatting the document It is a good idea to format the
code frequently.

● Each type of control has a particular set of properties. If you type the name of a

control followed by a dot, as shown below: label1.

67

and wait a little while, the editor will provide you with a list of the properties of the

label1 tag. If this tool is not configured on your system, you can activate it by selecting

the option:

Tools | Options | Text Editor | C#

and then ticking the checkbox Automatic membership list.

● Sections of code that we are not working on can be collapsed into a single line

of code. To do this, click on the small "-" symbol to the left of the editor. To expand a

section, click on the "+" symbol. You will find these symbols next to lines like the

following:

private void button1_Click (object sender, EventArgs e)

You do not need to remember all these tools, as they are always at your fingertips to

help you.

One of the tasks related to code layout that is not performed automatically is the

splitting of long lines. To ensure that a whole line is visible on the screen, we can

choose a suitable place to split it and press the Enter key. The IDE will indent the

second part of the line by four spaces. Here is an example:

private void button1_Click (object sender, EventArgs e)

If we press the Enter key after the comma, the code will appear like this:

private void button1_Click (object sender, EventArgs e)

Often the IDE will create very long lines which, of course, should not contain errors, so

it is best not to split them. However, as you become more experienced with C#, some

of these long lines will be of your own creation, and it will be very convenient to split

them so that you can see all the text at once. This also improves the readability of the

printed code (known as listing).

1.10 THE MESSAGE BOX

68

Previously we used the label control to display text on the screen, but we can also use

a message box to do this. This control does not appear in the toolbox, because it does

not take up permanent space on a form; it only appears when it is required. The

following is a code snippet that displays the Hello World message inside a message

box when a button is clicked:

private void button1_Click(object sender, EventArgs e)

{

MessageBox.Show("Hello world");

}

Figure 2.14 shows what happens when you run the program and click the button: the

message box is displayed, and you must click the OK button to make it disappear. This

feature implies that message boxes are used to display important messages that the

user cannot ignore.

To use a message box, type a line like the one above, but use your own message

inside the double quotes. At this point we will not explain the purpose of the Show

statement or why the brackets are required. We'll talk about all this when we study the

methods in more detail.

Figure 2.14 A message box

1.11 HELP

The help system works on the basis of two possible sources: one local, located on

your own computer, and the other via the Internet. The Internet source is updated

frequently; however, the local version is sufficient when you start working with C#: In

69

case you do not have an Internet connection, the program will automatically use the

local help.

If you wish to specify where the help should come from, you can reconfigure the

system as follows:

1. In the main C# window, choose Help | Search....

2. In the new help window, select Help | Help on Help. You will then be presented

with several options as to which source of help will have the highest priority.

The C# help system is extensive, but if you are new to programming you may find the

information it contains complicated. It is most useful when you have some experience

with C# and require precise technical detail.

The most useful options in the Help menu are Index and Search, as they allow you to

type in some text for the system to locate pages that may be useful to you. The

difference is that Index only looks at page titles, while Search also looks at page

content.

1.11.1 Programming fundamentals

● Controls can be placed on a form at design time.

● It is possible to set the properties of controls at design time.

● Programmes are able to modify properties at runtime.

● When an event occurs (such as clicking a button), the C# system

uses the appropriate method, but it is up to the programmer to place code

within the method to handle that event.

1.11.2 Common programming errors

- Forget to terminate the execution of your program before trying to modify the

form or the code.

- Confuse the design-time form with the run-time form.

1.11.3 Coding secrets

70

- In C# code, to refer to the property of a control we use its name followed

by a dot and the name of the property, as in:

label1.Text

- To a code section between:

private void botonNumero_Click(Object sender, EventArgs e)
{
}
is known as the method.

- Message boxes are not placed directly on the forms. To make them

appear on screen we must use the following instruction:

MessageBox.Show ("Here is the text you want");

1.11.4 New language elements
An introduction to properties, methods and events.

1.11.5 New IDE features

● Programmes are contained in projects.

● The IDE creates a folder containing the files needed for a project.

● It is possible to move and resize controls on forms.

● The toolbox contains a wide range of controls.

● Right-clicking on a control allows us to select its properties.

● Double-clicking a button at design time creates methods to handle

events.

1.11.6 Summary
Part of the programming task involves placing controls on forms and setting

their initial properties. The C# IDE performs this task directly, but you need

to practice with and read about the IDE.

71

Unit 4 - Input, physics, user interface, scenes and rendering

User interaction - Input

To allow the user to interact with our applications, Unity automatically provides an

“Input” class.

For more information see:

https://docs.unity3d.com/Manual/class-InputManager.html

https://docs.unity3d.com/ScriptReference/Input.html

Input provides the possibility to verify whether and when a physical button (joypad,

mouse, keyboard) is pressed, to obtain the position of one or more physical axes (es.

analog joystick, shifting of the mouse) or to create virtual axes starting from two digital

buttons (ex.speed - slows down button).

Unity is able to receive input from touch screens and from different smartphone

sensors (ex. gyroscope, camera and accelerometer)

void Update(){

if(Input.GetKeyUp(KeyCode.Space)){ //Input from keyboard or joypad

Debug.Log(“Space has been released”);

}

}

void Update(){

float myVerticalValue = Input.GetAxis("Vertical"); //input from analog

joystick or virtual axes

if(myVerticalValue != 0)

{

//eg move the player

}

}

72

https://docs.unity3d.com/Manual/class-InputManager.html
https://docs.unity3d.com/ScriptReference/Input.html

void Update(){

if(Input.GetMouseButton(0)){ //for mouse and touchscren input

Debug.Log(“Mouse 0 button has been clicked”);

Ray myRay = Camera.main.ScreenPointToRay(Input.mousePosition);

if(Physics.Raycast(myRay)){

//I clicked on something because myRay hit something

}

}

}

void Update(){

Vector3 myDeviceAcceleration = Input.acceleration; //Input from accelerometer

if(myDeviceAcceleration.magnitude > 10)

{

Debug.Log("Il device è stato scosso forte");

}

}

It is good to check and manage the input in the Update function (because the function

is invoked every time a frame is created) in order to have a responsiveness which is

proportional to the framerate of the application.

User Interaction - Output

In case of log output (as text) on console it’s possible to use the function:

Debug.Log(“customText”);

Most of the interaction between user and application takes place through the user

interface or UI.

Unity allows you to easily create a user interface using the GameObject Canvas. For

more information see:

https://docs.unity3d.com/2021.3/Documentation/Manual/UICanvas.html

https://docs.unity3d.com/ScriptReference/Canvas.html

73

https://docs.unity3d.com/2021.3/Documentation/Manual/UICanvas.html
https://docs.unity3d.com/ScriptReference/Canvas.html

Canvas allows you to create a programmable and customizable user interface using

different elements.

It's possible to add text and buttons.

To create a code that controls text through the button, add a script component to an

Empty GameObject.

using UnityEngine.UI

public class HealthDisplay : MonoBehaviour {

public Text myHealthText;

int myHealth = 10;

74

public void myButtonFunction(){ //function to connect to

the button

myHealth--; //Iower the healt

myHealthText.text = “HEALT : “ + myHealth; //updates the label

}

}

Link the text to the script using the attribute Public Text (My Health Text).

Link the button to the Empty GameObject script through the button’s onclick() feature

using the public function (void myButtonFunction()).

75

Physics - Collision

The collisions in Unity are processed thanks to the Collider components(BoxCollider,

SphereCollider, MeshCollider) and managed using events (OnCollisionEnter,

OnCollisionExit, OnCollisionStay). For more information see:

https://docs.unity3d.com/Manual/collision-section.html

https://docs.unity3d.com/ScriptReference/Collision.html

void OnCollisionEnter(Collision acollision){

if(acollision.relativeVelocity.magnitude >= 10){ //if a ball collides with

gameObject

Destroy(gameObject); //delete gameObject

Destroy(acollision.gameObject); //Destroy the ball

}

}

In Edit > Project Settings > Tags and Layers it’s possible to add new Layers

76

https://docs.unity3d.com/Manual/collision-section.html
https://docs.unity3d.com/ScriptReference/Collision.html

In Edit > Project Settings > Physics > Collision Matrix it’s possible to define among

which layers collisions must occur.

The modification of the component transform or the use of features

“transform.Translate or Transform.Rotate” don’t produce collisions.

To avoid unnecessary computations enter the collision component only when

necessary.

RigidBody
The main aspects of dynamics are simulated through the Rigidbody component.

https://docs.unity3d.com/Manual/rigidbody-physics-section.html

https://docs.unity3d.com/ScriptReference/Rigidbody.html

Through the use of the Rigidbody component you can apply forces and moments, you

can set speed, friction forces and gravity and create movements that produce

collisions.

private void Update(){

int jumpForce = 100;

int speed = 10;

if(Input.GetKeyDown(KeyCode.Space))

gameObject.rigidbody.AddForce(Vector3.up * jumpForce, ForceMode.Impulse);

if(Input.GetKeyDown(KeyCode.R)

gameObject.rigidbody.AddTorque(transform.right * speed, ForceMode.Force);

}

It is preferable to detach the use of physical simulations from the frame rate using the

function.

FixedUpdate piuttosto che Update.

private bool goingForward;

private void Update(){

goingForward = Input.GetKey(KeyCode.UpArrow);

}

77

https://docs.unity3d.com/Manual/rigidbody-physics-section.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html

private void FixedUpdate(){

if(goingForward){

gameObject.rigidbody.AddForce(Vector3.Forward * speed,

ForceMode.Force);

}

}

Very fast movement speeds may not be managed in time.

Physic Material
Physic Materials used on a GameObject with a collider enable to define some of its

physical properties as the creation of static and dynamic friction and the elasticity of

the object.

https://docs.unity3d.com/Manual/class-PhysicMaterial.html

Joints
It is possible to link two GameObject (with RigidBody) through the joint component.

https://docs.unity3d.com/Manual/joints-section.html

FixedJoint creates a fixed joint between the object this component has been attached

to and another specified object. The result is a fixed joint where one of the objects

physically follows the movements of the other (the same as a gameObject child follows

a GameObject parent).

78

https://docs.unity3d.com/Manual/class-PhysicMaterial.html
https://docs.unity3d.com/Manual/joints-section.html

Hingejoint creates a hinge joint between the object this component has been attached

to and another object. The result is a fixed constraint between the two objects which

only have the ability to rotate on the axis of the hinge.

SpringJoint creates a spring joint between the object this component has been

attached to and another object. The result is a joint between two objects that follows

the physics of a spring.

Ray (obstacles and bullets)

The Ray class allows you to create rays to probe the presence of objects starting from

a specific point and direction.

The RaycastHit class is used to memorise collisions though rays.

The function Physics.Raycast(.....) is used to check for collisions along the radius.

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Ray myRay = new Ray(myRayStartPoint,myRayDirection);

//Ray(transform.position, transform.forward) is a ray that starts from the object and is

directed forward

RaycastHit myHit;

float rayDistance = 100.0;

if (Physics.Raycast(myRay, out myHit, rayDistance)){

Debug.Log(myHit.collider.name); //we can get the collider of the hit object and its

name or other components

}

https://docs.unity3d.com/Manual/CameraRays.html

The Physics class provides several functionalities which are very useful for physics.

https://docs.unity3d.com/ScriptReference/Physics.html

https://docs.unity3d.com/Manual/PhysicsSection.html

79

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/Manual/CameraRays.html
https://docs.unity3d.com/ScriptReference/Physics.html
https://docs.unity3d.com/Manual/PhysicsSection.html

Rendering basics
There are different components that characterise the graphics of the objects. The

mesh filter component defines the shape of our GameObject.

https://docs.unity3d.com/Manual/mesh.html

With the Mesh Render component it is possible to define if the meshes of our

GameObject have to project and receive shadows and how they must behave when

they reflect light.

https://docs.unity3d.com/Manual/class-MeshRenderer.html

Shaders
Shaders are mathematical models used by Unity to tell the graphics card how to

represent the objects on screen according to lights, shadows, effects…

Each shader performs different calculations and gets different visual effects (for

example realistic shadows, cartoon effect, pixel effect…)

https://docs.unity3d.com/Manual/Shaders.html

Vertex shaders calculate reflections and shadows on a face of the mesh by averaging

what happens on the vertices of the face (faster but lower quality. Reflections and

shadows follow the shape of the mesh).

80

https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://docs.unity3d.com/Manual/Shaders.html

Pixel shaders calculate lights and shadows taking into account all the aspects related

to an object set in a single screen pixel (slower but with higher quality, shadows and

reflections are independent from the shape of the mesh they are attached).

Materials
Materials define the values that the shaders must use during the graphic calculations.

Using the same shader it is possible to define materials with different colors,

transparencies, brightness, opacity.

Not all shaders can handle all properties (eg transparency).

81

https://docs.unity3d.com/Manual/Materials.html

Texture
Textures can define color and other material properties pixel by pixel.

Importing a texture into Unity is as simple as dragging it into your Assets. To use it in a

material, just drag it into the property of the material for which we want to use it. (e.g.

albedo).

High-resolution textures complicate and lengthen graphic calculations exponentially.

https://docs.unity3d.com/Manual/Textures.html

Sources of Light
In Unity there are different light sources.

Point Light is a Light that’s located at a point in the Scene and emits light in all

directions equally

Spot Light is a Light that’s located at a point in the Scene and emits light in a cone

shape

Directional Light is a Light that’s located infinitely far away and emits light in one

direction only

82

https://docs.unity3d.com/Manual/Materials.html
https://docs.unity3d.com/Manual/Textures.html

Area Light is a Light that’s defined by polygon in the Scene, and emits light in all

directions uniformly across its surface area but only from one side.

For each light source it is possible to define its intensity, its colour, in some cases the

direction, the effect distance and whether or not this produces shadows.

https://docs.unity3d.com/Manual/Lighting.html

https://docs.unity3d.com/Manual/LightingOverview.html

On mobile devices, the use of shadows is not recommended.

83

https://docs.unity3d.com/Manual/Lighting.html
https://docs.unity3d.com/Manual/LightingOverview.html

Unit 5 - Practical guide using codes of the PLAY video game

In this chapter we will see how to realise some of the features in the video game.

Let’s create a new project by pressing the New project button.

Now, select “3D-core”, set the project name and select “Create Project”.

Once that the project is created, the Unity user interface will appear.

84

Let’s add a plane from the menù, following the written passages below: GameObject -> 3D

Object -> Plane

85

The plane will look like this:

86

Select the camera and make sure the plane is framed correctly

87

Move and rotate the camera with the appropriate tools on the left side of the scene view.

Let’s create a new material to colour the floor green.

88

Click with the left mouse button on the panel Assets, Create -> Material.

Let’s name the material

89

Set the colour in the "inspector" panel by pressing on the rectangle coloured in white.

90

Choose the colour.

Drag the material from the Assets and bring the plane into the scene view to

change its material.

91

With the same method create a cube and colour it light blue.

Let’s add the Rigidbody component:

Select the cube, press Add Component on the Inspector panel, search and select "Rigidbody".

92

This will allow the cube to be controlled using physics and to be subjected to gravity.

93

Select Freeze Rotation (X, Y, Z) if you want to prevent the cube from rotating while moving.

(tip: Instead of holding down the left mouse button and moving using the WASD keys you can

select an object from the "Hierarchy" panel and press SHIFT+F to focus the view directly on that

object).

Let’s add the overlaid text to communicate with the user:

94

GameObject -> UI -> Legacy -> Text

A very large "Canvas" (Canvas) will appear where we can add texts and other elements for the

graphic user interface.

95

Select Text (Legacy)

Change width, height, text e font size from the Inspector panel;

96

Move the text to the position that you want.

97

The position of the text in the canvas corresponds to the position on the screen during the

game.

Let’s create another cube:

In Inspector -> Box Collider check the “is Trigger” box to transform the cube in an area that

starts an event.

98

Uncheck the Mesh Render box to make the area that has been created invisible.

99

Locate the new cube in the top right corner of the plane.

Add a script component named TEXT.

Double click on the file that appear in assets and

add the code instruction at line 8.

Public string textToShow;

100

Save and close the code editor.

The added instruction enables us to use and set the textToShow string from the inspector panel.

Change the Text To Show value in “Congratulations! You get the Top Right Corner!”

Select the light blue cube and add a script component to it as well.

Name the script “Character” .

Open the script and add this line of code after the first brace before void Start()

public float forceAmount = 0.8f; //questa riga imposta il valore della forza

101

Add the following lines of codes between the two braces of the Update function.

Vector3 direction = new Vector3(Input.GetAxis("Horizontal"), 0, Input.GetAxis("Vertical"));

//ottiene la direzione utilizzando gli assi “Horizontal” e “Vertical” mappati sui tasti WASD o sulle

levette analogiche

direction=direction*forceAmount; /moltiplica la direzione per la forzat

rigidbody.AddForce(direction); //applica la forzqa utilizando il vettore direzione

These instructions will enable us to move our light blue cube using the WASD keys on the

keyboard.

The code will be similar to this:

SAVE

Enable the ability to use UI related instructions by adding the following in line 4

using UnityEngine.UI;

Insert the following string after the declaration of "forceAmount"

public Text textToChange;

102

The above line of code will allow us to link textToChange to text in the Canvas using the

Inspector panel.

Add this code before the closing of the last brace.

void OnTriggerEnter(Collider Other)

{

textToChange.GetComponent<Text>().text =

Other.gameObject.GetComponent<TEXT>().textToShow;

}

The previous function will change the overlay text to the one in the invisible cube code set as

the trigger area.

The code will be similar to this:

SAVE and close the code editor.

103

In order to change the text of the UI, it must be linked to the light blue cube using its Inspector

panel.

We set Character(script) -> Text To Change.

Drag Text (Legacy) from the Hierarchy panel to Character(script) -> Text To Change in the

inspector panel of the light blue cube.

SAVE the project and press play to try our game.

104

We can copy and paste the invisible cube several times to create different areas that show

different texts.

105

106

